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Intracranial hemorrhage (ICH) remains a time-critical emergency in which rapid, accurate interpre-
tation of non-contrast head CT is essential. While heavyweight convolutional networks can achieve
state-of-the-art performance, their computational cost can be restrictive. We therefore designed
and compared three lightweight, interpretable pipelines that share an EfficientNet-B0 backbone but
incorporate progressively richer contextual cues: (i) a plain 2-D slice classifier, (ii) a “2.5-D” variant
that concatenates neighboring slices, and (iii) a sequence model that fuses slice-to-slice dynamics
through a single-layer LSTM. All models were trained on 50,863 slices from 1,000 studies in the
RSNA ICH dataset, windowed into bone, subdural and brain settings. The plain 2-D benchmark
achieved a mean F1-score of 0.77 across the five RSNA hemorrhage subtypes. Simply adding ad-
jacent slices (2.5-D) did not improve performance (mean F1 = 0.76), whereas explicit temporal
modeling with the LSTM raised the mean F1 to 0.79 and delivered the best ROC curves (micro-
AUC = 0.98). Gradient-weighted class-activation maps revealed that the LSTM consistently focused
on anatomically plausible bleed regions, providing transparent visual rationales.
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I. INTRODUCTION

Intracranial hemorrhage (ICH) refers to bleeding within
the skull, either confined to the brain parenchyma or oc-
curring in the spaces between the brain and its protective
membranes [1]. This life-threatening condition demands
prompt medical intervention to minimize the risk of per-
manent neurological deficits or fatality. A recent global
burden study estimated that approximately 3.4 million
individuals experienced ICH in 2019, leading to an esti-
mated 2.8 million deaths worldwide [2].

In a 2003 investigation evaluating the performance
of board-certified radiologists in interpreting emergency
head CT scans via teleradiology, 716 emergency head
CTs were reviewed [3]. The authors reported a sensi-
tivity of 85% and a specificity of 99.8% for identifying
any form of intracranial hemorrhage.

More recently, deep learning approaches have been em-
ployed to enhance both the speed and accuracy of ICH
detection. In their 2025 meta-analysis, Karamian and
Seifi synthesized results from multiple studies of deep
learning algorithms applied to non-contrast CT (NCCT)
and found a pooled sensitivity of 0.92, specificity of 0.94,
positive predictive value (PVP) of 0.84, negative predic-
tive value (NPV) of 0.97, and an area under the curve
(ROC) of 0.96 [4].

In this report, three lightweight and interpretable mod-
els, building on the EfficientNet architecture with in-
creasing complexity, are presented and compared. They
were designed to strike a balance between complexity,
computational efficiency and accuracy. Combined with
Grad-CAM heatmaps, highlighting regions of interest
within each CT slice, the proposed frameworks aims to
achieve achieve robust hemorrhage detection while also
providing clear visual explanations that can support clin-

ical decision-making. We evaluate the models on a di-
verse, non-contrast CT dataset (RSNA), demonstrating
that they maintain high accuracy while reducing training
and inference time compared to heavier architectures. Fi-
nally, we discuss their respective benefits and drawbacks
as well as how they could be integrated into existing ra-
diology workflows to facilitate rapid triage and bolster
physician confidence in AI-assisted diagnosis.

II. METHOD

All models presented in this report use the EfficientNet-
B0 image classification model as the backbone, devel-
oped by researchers at google in 2019 [5]. The model uti-
lizes mobile inverted bottlenecks as well as squeeze-and-
excitation optimization to achieve up to 10 times better
efficiency than comparable models [5, 6], which makes
it suitable for computationally constrained environments
while preserving high accuracy.

A total of 50,863 CT images (N=1,000 patients) were
randomly drawn from the RSNA Intracranial Hemor-
rhage Detection challenge dataset and partitioned into
training, validation and test (70/15/15). See Table I for
distribution of hemorrhages present in the subset.

Prior to training, every CT study was also re-windowed
into three standard Hounsfield-unit ranges—[40, 80] HU
for bone, [40, 200] HU for subdural blood and [500, 2000]
HU for brain parenchyma—to enhance contrast of the
structures of interest. From each re-windowed volume
we extracted axial slices and linearly normalized pixel
values to [0, 1]. These three gray-scale windows were then
concatenated into a single three-channel image, providing
the model with complementary tissue contrasts in one
input tensor.
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FIG. 1. End-to-end inference pipeline for intracranial-hemorrhage detection. All three branches share identical
preprocessing: each CT slice is windowed into Bone, Subdural and Brain settings and stacked. 1. Plain 2-D A single three-
channel slice (B, 3, 224, 224) is fed to EfficientNet-B0; the pooled (B, 1280) feature vector maps directly to five logits through
a single fully connected layer. 2. 2.5-D The central slice plus two neighbors (nine channels) form (B, 9, 224, 224); the stem
is widened 3→9 via “Tile & Divide”, after which the pathway mirrors branch 1. 3. LSTM sequence Window triplets are
encoded slice-by-slice, yielding a sequence (3, B, 1280); a 256-unit LSTM fuses context and a linear head outputs the logits. In
every branch, sigmoid activation converts the logits to probabilities for the five RSNA haemorrhage subtypes.

TABLE I. Slice counts by hemorrhage type

Hemorrhage Type # Slices

Epidural 240

Intraparenchymal 2 853

Intraventricular 1 962

Subarachnoid 2 627

Subdural 3 180

All three models follows the structure of the chart
in Figure 1, with slight variations in implementation
and complexity. The first model, Plain 2D, serves
as a benchmark for the subsequent models and em-
ploys the EfficientNet-B0 model with the aforementioned
Hounsfield windows to make slice-level predictions of the
type hemorrhage present or absent in each slice. First,
each window stack is fed through the EfficientNet back-
bone, which after a global-average pooling layer, results
in feature vectors of size (1, 1280). Each batch (B) of
such feature vectors are then put trough a linear fully
connected layer with a sigmoid activation function to pro-
duce the final per-class probabilities.

The second model, 2.5D Feature extraction, expands

the context available to the network by also providing it
with information from its two neighboring slices. This
is done by replacing the stem of the network to accept
9 input channels instead of the original 3-channels. The
weights of the first convolutional layer is simply copied
three times and then concatenated, ”tiled”, along the
channel axis. To avoid potentially blowing up early acti-
vations and preserve the expected variance of the output,
the weights are scaled back down. This ”Tile and Di-
vide” modification allows the network to gain some spa-
tial awareness while the overall magnitude of the convolu-
tion outputs stays consistent with the pretrained model.

The third model, Sequence branch with LSTM, adds
further complexity by introducing a linear sequence
LSTM model to allow it to learn explicit slice-to-slice dy-
namics, so far not present in the previous models. Instead
of feeding the full stack of 9 slices (3× 3 windows), each
of the 3 window triplets (center slice and its two neigh-
bors) are subsequently fed through the network, produc-
ing three separate feature vectors. These slice-level fea-
ture vectors are then fed, in scan order, to a single-layer
LSTM (hidden dim = 256). The final hidden state of size
(B, 256) is then mapped to the final 5 predictions by a
lightweight fully-connected layer.

After training, we sweep class-specific decision thresh-
olds on the validation set to maximise F1. The result-
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ing optimal thresholds are then frozen and applied un-
changed to the held-out test set.

In addition to the quantitative metrics reported for
each architecture, we employed Gradient-weighted Class
Activation Mapping (Grad-CAM) to gain qualitative in-
sight into the spatial regions that most strongly influ-
enced every model’s predictions. The gradients of the
predicted class scores with respect to the final convo-
lutional feature map was back-propagated, pooled, and
projected onto the input image, yielding a coarse heat-
map that highlights regions deemed salient by the net-
work. To make the resulting saliency maps easier to in-
terpret, the heat-maps were (i) normalized to the full
0–1 range, (ii) up-sampled to the original 512× 512 res-
olution with bilinear interpolation, and (iii) overlaid in
false-color on the corresponding CT slice.

III. RESULTS AND DISCUSSION

The resulting per-class F1 scores on the test set of each
model and their respective micro-averages is shown in
Table II. Higher numbers indicate better bleed detection.

TABLE II. F1 Scores for different hemorrhage types

Hemorrhage 2D 2.5D LSTM

Epidural 0.75 0.75 0.77

Intraparenchymal 0.79 0.78 0.82

Intraventricular 0.77 0.76 0.75

Subarachnoid 0.75 0.73 0.78

Subdural 0.79 0.80 0.84

Average 0.77 0.76 0.79

As can be seen for the table, there is no discernible im-
provement in the 2.5D model, that added the neighbor-
ing slices to the convolutional network, over the standard
2D EfficientNetB-0 model. In fact, it slightly reduced the
F1 scores on average. The sequence LSTM model on the
other hand, showed an improvement in 4 of 5 of the bleed
types, especially subdural (+0.05, +0.04), showing that
adding slice-to-slice context helps the network in general
make more accurate calls than the 2-D or 2.5-D versions.

To further analyze how well each model distinguish
between the different bleed types, regardless of the set
threshold from the grid search on the validation set, we
can compare the models Receiver-operating characteris-
tic curves (ROC), see Figure 2.
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FIG. 2. Receiver-operating characteristic (ROC)
curves for multi-label intracranial hemorrhage clas-
sification on the test set. The blue dotted line shows the
micro-average ROC curve (AUC = 0.98), summarizing overall
slice-level discrimination across all hemorrhage types, while
the solid curves represent each subtype’s ROC: Epidural, In-
traparenchymal, Intraventricular, Subarachnoid, and Subdu-
ral. The black dashed diagonal denotes chance performance
(AUC = 0.50).
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FIG. 3. CT images and corresponding Grad-CAM saliency maps for five intracranial hemorrhage types. Top
row: Axial non–contrast CT slices demonstrating (from left to right) (A) intraparenchymal hemorrhage, (B) intraventricular
hemorrhage, (C) subarachnoid hemorrhage, (D) subdural hemorrhage, and (E) epidural hemorrhage. Bottom row: Grad-CAM
overlays computed from the sequence LSTM model, projected onto the same CT slices. Warmer colors indicate regions of
greatest model attention when classifying each hemorrhage subtype.

From the figure, we can see that the 2.5D network (mid-
dle graph) actually scores higher on two of the hemor-
rhage classes compared to the plain 2D case (top graph),
showing that the extra context helped the classifier rank
positives ahead of negatives more reliably in some cases.
However, these ranking gains did not translate into the
threshold-dependent F1 metric, likely because the opti-
mal cut-off chosen on the validation grid shifted unfavor-
ably once applied to the test set.

For the sequence LSTM model (bottom graph), all
ROC curves performed better or equally as good as the
two other architectures, again showing the performance
increase of the added slice-to-slice dynamics.

In Figure 3, one example of each hemorrhage type and
their respective Grad-CAM saliency maps are shown, ex-
tracted from the best performing sequence LSTM model.
The selected images show that the gradients of the pre-
dicted classes with respect to the final convolutional
layer, can correctly highlight regions of the CT scans
where a bleed is present, and thus increase the exlain-
ability of the final predictions. However, it is not guar-
anteed that the resulting saliency maps directly corre-
sponds to bleed regions in the anatomical sense. Grad-
CAM highlights where the network’s last convolutional
feature maps change the logit of a given class the most,
and that influence may arise from subtle contextual cues
(e.g. midline shift, ventricle shape) rather than from
voxels that actually contain hemorrhage. Consequently,
saliency maps should be interpreted as suggestive rather
than diagnostic. In clinical deployment they are best
used to draw the reader’s attention to candidate regions
while preserving the radiologist’s final responsibility for
verification.

IV. CONCLUSIONS AND OUTLOOK

Our experiments show that progressively adding con-
text to an EfficientNet-B0 backbone can raise slice-level
intracranial-hemorrhage performance while keeping the
model architecture lean and efficient to run on consumer
hardware, including directly on CPU. The plain 2-D
model already reached an average F1 of 0.77, but explic-
itly modeling slice-to-slice continuity with a lightweight
LSTM lifted the score to 0.79 and produced the strongest
ROC curves across all five hemorrhage subtypes, while
Grad-CAM heat-maps confirmed that the network at-
tends to anatomically plausible regions. Simply stacking
neighboring slices in a “2.5-D” input was less helpful,
improving rank-ordering for some classes yet failing to
boost threshold-dependent F1, suggesting that context
must explicitly be learned rather than hinted.
Future work might examine supplying the LSTM with

a wider window of neighboring slices or integrating slices
from multiple imaging planes to better capture and differ-
entiate three-dimensional features. Methods of improv-
ing the consistency of the Grad-CAM explanations across
adjacent slices, such as enforcing temporal-smoothness
constraints or regularizing the maps with weak anatomi-
cal priors, could also potentially further boost the detec-
tor’s clinical reliability.
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V. DATA AND CODE AVAILABILITY

The RSNA dataset is available for download at:
www.kaggle.com/c/rsna-intracranial-hemorrhage-
detection/data
All code used for this report is available at:

github.com/TheGabbe/RSNA-EfficientNetModels
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